An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets

Author:

Swapnarekha H.12,Nayak Janmenjoy3,Behera H. S.2,Dash Pandit Byomakesha1,Pelusi Danilo4

Affiliation:

1. Department of Information Technology, Aditya Institute of Technology and Management (AITAM), Tekkali, Andhra Pradesh 532201, India

2. Department of Information Technology, Veer Surendra Sai University of Technology, Burla 768018, India

3. Department of Computer Science, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003, India

4. Communication Sciences, University of Teramo, Coste Sant'agostino Campus, Teramo 64100, Italy

Abstract

<abstract> <p>The unprecedented rise in the number of COVID-19 cases has drawn global attention, as it has caused an adverse impact on the lives of people all over the world. As of December 31, 2021, more than 2, 86, 901, 222 people have been infected with COVID-19. The rise in the number of COVID-19 cases and deaths across the world has caused fear, anxiety and depression among individuals. Social media is the most dominant tool that disturbed human life during this pandemic. Among the social media platforms, Twitter is one of the most prominent and trusted social media platforms. To control and monitor the COVID-19 infection, it is necessary to analyze the sentiments of people expressed on their social media platforms. In this study, we proposed a deep learning approach known as a long short-term memory (LSTM) model for the analysis of tweets related to COVID-19 as positive or negative sentiments. In addition, the proposed approach makes use of the firefly algorithm to enhance the overall performance of the model. Further, the performance of the proposed model, along with other state-of-the-art ensemble and machine learning models, has been evaluated by using performance metrics such as accuracy, precision, recall, the AUC-ROC and the F1-score. The experimental results reveal that the proposed LSTM + Firefly approach obtained a better accuracy of 99.59% when compared with the other state-of-the-art models.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neighbour adjusted dispersive flies optimization based deep hybrid sentiment analysis framework;Multimedia Tools and Applications;2024-01-15

2. Bio-Inspired Feature Selection Techniques for Sentiment Analysis – Review;2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS);2023-02-02

3. Advancements in AI-driven multilingual comprehension for social robot interactions: An extensive review;Electronic Research Archive;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3