An adaptive offloading framework for license plate detection in collaborative edge and cloud computing

Author:

Zhang Hong1,Wang Penghai1,Zhang Shouhua2,Wu Zihan1

Affiliation:

1. School of Cyber Security and Computer, Hebei University, Baoding, Hebei, China

2. Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland

Abstract

<abstract><p>With the explosive growth of edge computing, huge amounts of data are being generated in billions of edge devices. It is really difficult to balance detection efficiency and detection accuracy at the same time for object detection on multiple edge devices. However, there are few studies to investigate and improve the collaboration between cloud computing and edge computing considering realistic challenges, such as limited computation capacities, network congestion and long latency. To tackle these challenges, we propose a new multi-model license plate detection hybrid methodology with the tradeoff between efficiency and accuracy to process the tasks of license plate detection at the edge nodes and the cloud server. We also design a new probability-based offloading initialization algorithm that not only obtains reasonable initial solutions but also facilitates the accuracy of license plate detection. In addition, we introduce an adaptive offloading framework by gravitational genetic searching algorithm (GGSA), which can comprehensively consider influential factors such as license plate detection time, queuing time, energy consumption, image quality, and accuracy. GGSA is helpful for Quality-of-Service (QoS) enhancement. Extensive experiments show that our proposed GGSA offloading framework exhibits good performance in collaborative edge and cloud computing of license plate detection compared with other methods. It demonstrate that when compared with traditional all tasks are executed on the cloud server (AC), the offloading effect of GGSA can be improved by 50.31%. Besides, the offloading framework has strong portability when making real-time offloading decisions.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3