Biomechanical study of the effect of traction on elbow joint capsule contracture

Author:

Wang Fang12,Wang Jiaming1,Li Mingxin3,Hu Jun1,Song Kehua1,Zhang Jianguo1,Fan Yubo45

Affiliation:

1. College of Mechanical Engineering, The Key Laboratory of Integrated Design and On-Line Monitoring of Light Industrial and Food Engineering Machinery and Equipment in Tianjin, Tianjin University of Science & Technology, Tianjin 300222, China

2. Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Afairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China

3. Department of Traumatic Orthopaedics, Tianjin Hospital, Tianjin 300299, China

4. Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Sciences and Medical Engineering, Beihang University, Beijing 100083, China

5. Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China

Abstract

<abstract> <p>Dynamic orthoses have a significant effect on the treatment of elbow capsular contracture. Because of the lack of quantitative research on traction forces, determining the appropriate traction force to help stretch soft tissues and maintain the joint's range of motion is a challenge in the rehabilitation process. We developed a human elbow finite element (FE) model incorporating the activity behavior of the muscles and considering different capsular contracture locations, including total, anterior and posterior capsular contractures, to analyze the internal biomechanical responses of different capsular contracture models during flexion (30 to 80 degrees). Traction loads of 10, 20, 30 and 40 N were applied to the ulna and radius at the maximum flexion angle (80 degrees) to explore the appropriate traction loads at week 4 after a joint capsule injury. We observed a significant increase in posterior capsule stress with anterior capsular contracture (ACC), and the maximum peak stress was 1.3 times higher than that in the healthy model. During the fourth week after elbow capsule injury, the appropriate traction forces for total capsule contracture (TCC), ACC and posterior capsule contracture (PCC) were 20, 10 and 20 N, respectively; these forces maintained a stable biomechanical environment for the elbow joint and achieved a soft tissue pulling effect, thus increasing elbow mobility. The results can be used as a quantitative guide for the rehabilitation physicians to determine the traction load for a specific patient.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3