Author:
Yu Ting,Wang Qinglong,Zhai Shuqi
Abstract
<abstract><p>In this manuscript, a novel ratio-dependent predator-prey bioeconomic model with time delay and additional food supply is investigated. We first change the bioeconomic model into a normal version by virtue of the differential-algebraic system theory. The local steady-state of equilibria and Hopf bifurcation could be derived by varying time delay. Later, the formulas of the direction of Hopf bifurcation and the properties of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. Moreover, employing the Pontryagin's maximum principle and considering the instantaneous annual discount rate, the optimal harvesting problem of the model without time delay is analyzed. Finally, four numeric examples are carried out to verify the rationality of our analytical findings. Our analytical results show that Hopf bifurcation occurs in this model when the value of bifurcation parameter, the time delay of the maturation time of prey, crosses a critical value.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献