Identification and verification of FN1, P4HA1 and CREBBP as potential biomarkers in human atrial fibrillation

Author:

Zhu Miao,Yan Tao,Zhu Shijie,Weng Fan,Zhu Kai,Wang Chunsheng,Guo Changfa

Abstract

<abstract> <sec><title>Background</title><p>Atrial fibrillation (AF) is a common arrhythmia that can lead to cardiac complications. The mechanisms involved in AF remain elusive. We aimed to explore the potential biomarkers and mechanisms underpinning AF. </p></sec> <sec><title>Methods</title><p>An independent dataset, GSE2240, was obtained from the Gene Expression Omnibus database. The R package, "limma", was used to screen for differentially expressed genes (DEGs) in individuals with AF and normal sinus rhythm (SR). Weighted gene co-expression network analysis (WGCNA) was applied to cluster DEGs into different modules based on functional disparities. Enrichment analyses were performed using the Database for Annotation, Visualization and Integrated Discovery. A protein–protein interaction network was constructed, and hub genes were identified using cytoHubba. Quantitative reverse-transcription PCR was used to validate mRNA expression in individuals with AF and SR. </p></sec> <sec><title>Results</title><p>We identified 2, 589 DEGs clustered into 10 modules using WGCNA. Gene Ontology analysis showed specific clustered genes significantly enriched in pathways associated with the extracellular matrix and collagen organization. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes were mainly enriched for proteoglycans in cancer, extracellular matrix–receptor interaction, focal adhesion, and the PI3K-Akt signaling pathway. Three hub genes, <italic>FN1</italic>, <italic>P4HA1</italic> and <italic>CREBBP</italic>, were identified, which were highly correlated with AF endogenesis. mRNA expression of hub genes in patients with AF were higher than in individuals with normal SR, consistent with the results of bioinformatics analysis. </p></sec> <sec><title>Conclusions</title><p><italic>FN1</italic>, <italic>P4HA1</italic>, and <italic>CREBBP</italic> may play critical roles in AF. Using bioinformatics, we found that expression of these genes was significantly elevated in patients with AF than in individuals with normal SR. Furthermore, these genes were elevated at core positions in the mRNA interaction network. These genes should be further explored as novel biomarkers and target candidates for AF therapy.</p></sec> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3