Abstract
<abstract>
<p>Shortages of medical equipment, growth in medical waste and carbon emissions have increased healthcare pressures and has a huge impact on the environment. An efficient scheduling of medical equipment will effectively reduce the pressure on healthcare and improve the healthcare system's ability to respond to unexpected disasters. A medical equipment scheduling system was established to improve the sustainable utilization of medical equipment within the healthcare network and to reduce the carbon emissions of the healthcare process. First, this paper combines medical equipment information to establish a medical equipment scheduling decision model that considers pollution to filter qualified medical equipment for scheduling. Then, this paper constructs and solves a multi-objective robust optimization model by collecting the patient's travel information and the medical pressure information of each region. In addition, to meet dynamic healthcare needs, a dynamic medical equipment configuration framework was constructed to enhance the flexibility of equipment scheduling and the resilience of the healthcare network. Combined with case studies, the results show that the medical equipment scheduling system can help decision makers make quick scheduling decisions and achieve sustainable use of medical equipment, with a corresponding increase in medical equipment utilization of 12.25% and a reduction in carbon emissions of 26.50%. The study will help enhance healthcare resource utilization and contribute to the net-zero goal of green healthcare.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine