An adversarially consensus model of augmented unlabeled data for cardiac image segmentation (CAU<sup>+</sup>)

Author:

Cheng Wenli,Jiao Jiajia

Abstract

<abstract> <p>High quality medical images play an important role in intelligent medical analyses. However, the difficulty of acquiring medical images with professional annotation makes the required medical image datasets, very expensive and time-consuming. In this paper, we propose a semi-supervised method, $ {\mathrm{C}\mathrm{A}\mathrm{U}}^{+} $, which is a consensus model of augmented unlabeled data for cardiac image segmentation. First, the whole is divided into two parts: the segmentation network and the discriminator network. The segmentation network is based on the teacher student model. A labeled image is sent to the student model, while an unlabeled image is processed by CTAugment. The strongly augmented samples are sent to the student model and the weakly augmented samples are sent to the teacher model. Second, $ {\mathrm{C}\mathrm{A}\mathrm{U}}^{+} $ adopts a hybrid loss function, which mixes the supervised loss for labeled data with the unsupervised loss for unlabeled data. Third, an adversarial learning is introduced to facilitate the semi-supervised learning of unlabeled images by using the confidence map generated by the discriminator as a supervised signal. After evaluating on an automated cardiac diagnosis challenge (ACDC), our proposed method $ {\mathrm{C}\mathrm{A}\mathrm{U}}^{+} $ has good effectiveness and generality and $ {\mathrm{C}\mathrm{A}\mathrm{U}}^{+} $ is confirmed to have a improves dice coefficient (DSC) by up to 18.01, Jaccard coefficient (JC) by up to 16.72, relative absolute volume difference (RAVD) by up to 0.8, average surface distance (ASD) and 95% Hausdorff distance ($ {HD}_{95} $) reduced by over 50% than the latest semi-supervised learning methods.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3