A robust and high-precision edge segmentation and refinement method for high-resolution images

Author:

Li Qiming,Chen Chengcheng

Abstract

<abstract> <p>Limited by GPU memory, high-resolution image segmentation is a highly challenging task. To improve the accuracy of high-resolution segmentation, High-Resolution Refine Net (HRRNet) is proposed. The network is divided into a rough segmentation module and a refinement module. The former improves DeepLabV3+ by adding the shallow features of 1/2 original image size and the corresponding skip connection to obtain better rough segmentation results, the output of which is used as the input of the latter. In the refinement module, first, the global context information of the input image is obtained by a global process. Second, the high-resolution image is divided into patches, and each patch is processed separately to obtain local details in a local process. In both processes, multiple refine units (RU) are cascaded for refinement processing, and two cascaded residual convolutional units (RCU) are added to the different output paths of RU to improve the mIoU and the convergence speed of the network. Finally, according to the context information of the global process, the refined patches are pieced to obtain the refined segmentation result of the whole high-resolution image. In addition, the regional non-maximum suppression is introduced to improve the Sobel edge detection, and the Pascal VOC 2012 dataset is enhanced, which improves the segmentation accuracy and robust performance of the network. Compared with the state-of-the-art semantic segmentation models, the experimental results show that our model achieves the best performance in high-resolution image segmentation.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3