Author:
Yu Zhenao,Duan Peng,Meng Leilei,Han Yuyan,Ye Fan
Abstract
<abstract><p>Effective path planning (PP) is the basis of autonomous navigation for mobile robots. Since the PP is an NP-hard problem, intelligent optimization algorithms have become a popular option to solve this problem. As a classic evolutionary algorithm, the artificial bee colony (ABC) algorithm has been applied to solve numerous realistic optimization problems. In this study, we propose an improved artificial bee colony algorithm (IMO-ABC) to deal with the multi-objective PP problem for a mobile robot. Path length and path safety were optimized as two objectives. Considering the complexity of the multi-objective PP problem, a well-environment model and a path encoding method are designed to make solutions feasible. In addition, a hybrid initialization strategy is applied to generate efficient feasible solutions. Subsequently, path-shortening and path-crossing operators are developed and embedded in the IMO-ABC algorithm. Meanwhile, a variable neighborhood local search strategy and a global search strategy, which could enhance exploitation and exploration, respectively, are proposed. Finally, representative maps including a real environment map are employed for simulation tests. The effectiveness of the proposed strategies is verified through numerous comparisons and statistical analyses. Simulation results show that the proposed IMO-ABC yields better solutions with respect to hypervolume and set coverage metrics for the later decision-maker.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference47 articles.
1. K. Sharma, R. Doriya, Path planning for robots: An elucidating draft, Int. J. Intell. Robot., 4 (2020), 1–14. https://doi.org/10.1007/s41315-020-00129-0
2. H. Zhao, J. Liu, H. Chen, J. Chen, Y. Li, J. Xu, et al., Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network, IEEE T. Reliab., (2022), 1–11. https://doi.org/10.1109/TR.2022.3180273
3. S. Liu, G. Tian, Y. Zhang, P. Duan, Scene recognition mechanism for service robot adapting various families: A CNN-based approach using multi-type cameras, IEEE T. Multimedia, 2021. https://doi.org/10.1109/TMM.2021.3080076
4. M. Zhang, G. Tian, Y. Zhang, P. Duan, Service skill improvement for home robots: Autonomous generation of action sequence based on reinforcement learning, Knowl.-based Syst., 212 (2021). https://doi.org/10.1016/j.knosys.2020.106605
5. Y. Zhang, G. Tian, X. Shao, S. Liu, M. Zhang, P. Duan, Building metric-topological map to efficient object search for mobile robot, IEEE Trans. Ind. Electron., 69 (2022), 7070–7087. https://doi.org/10.1109/TIE.2021.3095812
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献