MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation

Author:

Zhang Yuqing12,Han Yutong12,Zhang Jianxin123

Affiliation:

1. School of Computer Science and Engineering, Dalian Minzu University, Dalian 116600, China

2. Institute of Machine Intelligence and Biocomputing, Dalian Minzu University, Dalian 116600, China

3. SEAC Key Laboratory of Big Data Applied Technology, Dalian Minzu University, Dalian 116600, China

Abstract

<abstract><p>Computer-aided brain tumor segmentation using magnetic resonance imaging (MRI) is of great significance for the clinical diagnosis and treatment of patients. Recently, U-Net has received widespread attention as a milestone in automatic brain tumor segmentation. Following its merits and motivated by the success of the attention mechanism, this work proposed a novel mixed attention U-Net model, i.e., MAU-Net, which integrated the spatial-channel attention and self-attention into a single U-Net architecture for MRI brain tumor segmentation. Specifically, MAU-Net embeds Shuffle Attention using spatial-channel attention after each convolutional block in the encoder stage to enhance local details of brain tumor images. Meanwhile, considering the superior capability of self-attention in modeling long-distance dependencies, an enhanced Transformer module is introduced at the bottleneck to improve the interactive learning ability of global information of brain tumor images. MAU-Net achieves enhancing tumor, whole tumor and tumor core segmentation Dice values of 77.88/77.47, 90.15/90.00 and 81.09/81.63% on the brain tumor segmentation (BraTS) 2019/2020 validation datasets, and it outperforms the baseline by 1.15 and 0.93% on average, respectively. Besides, MAU-Net also demonstrates good competitiveness compared with representative methods.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3