Improved graph neural network-based green anaconda optimization for segmenting and classifying the lung cancer

Author:

Dinesh Krishnan S.1,Pelusi Danilo2,Daniel A.3,Suresh V.4,Balusamy Balamurugan5

Affiliation:

1. Assistant professor, B V Raju Institute of Technology, Narsapur, Telangana, India

2. Department of Communication Sciences, University of Teramo, Italy

3. Associate Professor, Amity University, Gwalior, Madhya Pradesh, India

4. Assistant professor, Dr. N. G. P Institute of Technology, Coimbatore, India

5. Associate Dean-Student Engagement, Shiv Nadar University, India

Abstract

<abstract> <p>Normal lung cells incur genetic damage over time, which causes unchecked cell growth and ultimately leads to lung cancer. Nearly 85% of lung cancer cases are caused by smoking, but there exists factual evidence that beta-carotene supplements and arsenic in water may raise the risk of developing the illness. Asbestos, polycyclic aromatic hydrocarbons, arsenic, radon gas, nickel, chromium and hereditary factors represent various lung cancer-causing agents. Therefore, deep learning approaches are employed to quicken the crucial procedure of diagnosing lung cancer. The effectiveness of these methods has increased when used to examine cancer histopathology slides. Initially, the data is gathered from the standard benchmark dataset. Further, the pre-processing of the collected images is accomplished using the Gabor filter method. The segmentation of these pre-processed images is done through the modified expectation maximization (MEM) algorithm method. Next, using the histogram of oriented gradient (HOG) scheme, the features are extracted from these segmented images. Finally, the classification of lung cancer is performed by the improved graph neural network (IGNN), where the parameter optimization of graph neural network (GNN) is done by the green anaconda optimization (GAO) algorithm in order to derive the accuracy maximization as the major objective function. This IGNN classifies lung cancer into normal, adeno carcinoma and squamous cell carcinoma as the final output. On comparison with existing methods with respect to distinct performance measures, the simulation findings reveal the betterment of the introduced method.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiside graph neural network-based attention for local co-occurrence features fusion in lung nodule classification;Expert Systems with Applications;2024-10

2. Sentiment Analysis of Text and Emoji using Machine Learning Algorithms;2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies;2024-03-22

3. Cybersecurity Using Hybrid Type Model for Classification Through SCO Optimization Technique;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

4. Advancing Oncology Diagnostics: AI-Enabled Early Detection of Lung Cancer Through Hybrid Histological Image Analysis;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3