An efficient coverage method for SEMWSNs based on adaptive chaotic Gaussian variant snake optimization algorithm

Author:

Liu Xiang1,Tian Min1,Zhou Jie2,Liang Jinyan1

Affiliation:

1. College of mechanical and electrical engineering, Shihezi University, Shihezi 832000, China

2. College of information science and technology, Shihezi University, Shihezi 832000, China

Abstract

<abstract> <p>Soil element monitoring wireless sensor networks (SEMWSNs) are widely used in soil element monitoring agricultural activities. SEMWSNs monitor changes in soil elemental content during agriculture products growing through nodes. Based on the feedback from the nodes, farmers adjust irrigation and fertilization strategies on time, thus promoting the economic growth of crops. The critical issue in SEMWSNs coverage studies is to achieve maximum coverage of the entire monitoring field by adopting a smaller number of sensor nodes. In this study, a unique adaptive chaotic Gaussian variant snake optimization algorithm (ACGSOA) is proposed for solving the above problem, which also has the advantages of solid robustness, low algorithmic complexity, and fast convergence. A new chaotic operator is proposed in this paper to optimize the position parameters of individuals, enhancing the convergence speed of the algorithm. Moreover, an adaptive Gaussian variant operator is also designed in this paper to effectively avoid SEMWSNs from falling into local optima during the deployment process. Simulation experiments are designed to compare ACGSOA with other widely used metaheuristics, namely snake optimizer (SO), whale optimization algorithm (WOA), artificial bee colony algorithm (ABC), and fruit fly optimization algorithm (FOA). The simulation results show that the performance of ACGSOA has been dramatically improved. On the one hand, ACGSOA outperforms other methods in terms of convergence speed, and on the other hand, the coverage rate is improved by 7.20%, 7.32%, 7.96%, and 11.03% compared with SO, WOA, ABC, and FOA, respectively.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3