Fall detection based on dynamic key points incorporating preposed attention

Author:

Zheng Kun1,Li Bin1,Li Yu1,Chang Peng1,Sun Guangmin1,Li Hui1,Zhang Junjie2

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Smart Learning Institute, Beijing Normal University, Beijing 100875, China

Abstract

<abstract> <p>Accidental falls pose a significant threat to the elderly population, and accurate fall detection from surveillance videos can significantly reduce the negative impact of falls. Although most fall detection algorithms based on video deep learning focus on training and detecting human posture or key points in pictures or videos, we have found that the human pose-based model and key points-based model can complement each other to improve fall detection accuracy. In this paper, we propose a preposed attention capture mechanism for images that will be fed into the training network, and a fall detection model based on this mechanism. We accomplish this by fusing the human dynamic key point information with the original human posture image. We first propose the concept of dynamic key points to account for incomplete pose key point information in the fall state. We then introduce an attention expectation that predicates the original attention mechanism of the depth model by automatically labeling dynamic key points. Finally, the depth model trained with human dynamic key points is used to correct the detection errors of the depth model with raw human pose images. Our experiments on the Fall Detection Dataset and the UP-Fall Detection Dataset demonstrate that our proposed fall detection algorithm can effectively improve the accuracy of fall detection and provide better support for elderly care.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3