Affiliation:
1. Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China
2. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
Abstract
<abstract><p>In the control of the self-driving vehicles, PID controllers are widely used due to their simple structure and good stability. However, in complex self-driving scenarios such as curvature curves, car following, overtaking, etc., it is necessary to ensure the stable control accuracy of the vehicles. Some researchers used fuzzy PID to dynamically change the parameters of PID to ensure that the vehicle control remains in a stable state. It is difficult to ensure the control effect of the fuzzy controller when the size of the domain is not selected properly. This paper designs a variable-domain fuzzy PID intelligent control method based on Q-Learning to make the system robust and adaptable, which is dynamically changed the size of the domain to further ensure the control effect of the vehicle. The variable-domain fuzzy PID algorithm based on Q-Learning takes the error and the error rate of change as input and uses the Q-Learning method to learn the scaling factor online so as to achieve online PID parameters adjustment. The proposed method is verified on the Panosim simulation platform.The experiment shows that the accuracy is improved by 15% compared with the traditional fuzzy PID, which reflects the effectiveness of the algorithm.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献