Low distortion reversible database watermarking based on hybrid intelligent algorithm

Author:

Cai Chuanda1,Peng Changgen12,Niu Jin1,Tan Weijie123,Tang Hanlin4

Affiliation:

1. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

2. College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

3. Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Guiyang 550025, China

4. Guizhou ShuJuBao Network Technology Co.Ltd, Guiyang 550025, China

Abstract

<abstract><p>In many fields, such as medicine and the computer industry, databases are vital in the process of information sharing. However, databases face the risk of being stolen or misused, leading to security threats such as copyright disputes and privacy breaches. Reversible watermarking techniques ensure the ownership of shared relational databases, protect the rights of data owners and enable the recovery of original data. However, most of the methods modify the original data to a large extent and cannot achieve a good balance between protection against malicious attacks and data recovery. In this paper, we proposed a robust and reversible database watermarking technique using a hash function to group digital relational databases, setting the data distortion and watermarking capacity of the band weight function, adjusting the weight of the function to determine the watermarking capacity and the level of data distortion, using firefly algorithms (FA) and simulated annealing algorithms (SA) to improve the efficiency of the search for the location of the watermark embedded and, finally, using the differential expansion of the way to embed the watermark. The experimental results prove that the method maintains the data quality and has good robustness against malicious attacks.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3