C4 olefin production conditions optimizing based on a hybrid model
-
Published:2023
Issue:7
Volume:20
Page:12433-12453
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Zhou Yancong1, Xu Chenheng2, Chen Yongqiang1, Li Shanshan3
Affiliation:
1. School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China 2. School of Economics, Tianjin University of Commerce, Tianjin 300134, China 3. School of Science, Tianjin University of Commerce, Tianjin 300134, China
Abstract
<abstract>
<p>The yield of C4 olefin is often low due to the complexity of the associated products. Finding the optimal ethanol reaction conditions requires repeated manual experiments, which results in a large consumption of resources. Therefore, it is challenging to design ethanol reaction conditions to make the highest possible yield of C4 olefin. This paper introduces artificial intelligence technology to the optimization problem of C4 olefin production conditions. A sample incremental eXtreme Gradient Boosting tree based on Gaussian noise (GXGB) is proposed to establish the objective function of the variables to be optimized. The Sparrow Search Algorithm (SSA), which has an improved advantage in the optimization efficiency, is used to combine with GXGB. Therefore, a kind of hybrid model GXGB-SSA that can solve the optimization of complex problems is proposed. The purpose of this model is to find the combination of ethanol reaction conditions that makes the maximum yield of C4 olefin. In addition, due to the insufficient interpretation ability of GXGB on the data, the SHAP (SHapley Additive exPlanations) value method is creatively introduced to investigate the effect of each ethanol reaction condition on the yield of C4 olefin. The constraints of each decision variable for optimization are adjusted according to the analysis results. The experimental results have showed that the proposed GXGB-SSA model obtained the combination of ethanol reaction conditions that maximized the yield of C4 olefin. (i.e., when the Co loading is 1.1248 wt%, the Co/SiO<sub>2</sub> and HAP mass ratio is 1.8402, the ethanol concentration is 0.8992 ml/min, the total catalyst mass is 400 mg, and the reaction temperature is 420.37 ℃, the highest C4 olefin yield is obtained as 5611.46%). It is nearly 25.46 % higher compared to the current highest yield of 4472.81 % obtained from manual experiments.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference40 articles.
1. F. Yu, Z. J. Li, Y. L. An, P. Gao, L. S. Zhong, Y. H. Sun, Research progress on direct preparation of low carbon olefins by catalytic conversion of syngas, J. Fuel Chem., 44 (2016), 14. https://doi.org/10.3969/j.issn.0253-2409.2016.07.005 2. Z. B. Guo, Y. Y. Zhang, X. Feng, Separation and purification of C_4 to C_6 hydrocarbons by metal-organic framework, J. Chem-NY., 78 (2020), 10. https://doi.org/10.6023/A20030081 3. H. T. Wang, G. Z. Qi, X. H. Li, W. Li, Coupling catalytic cracking of C4 olefins with methanol conversion to olefins over SAPO-34 catalyst, Chem. React. Eng. Process., 2 (2013), 47–53. https://doi.org/CNKI: SUN: HXFY.0.2013-02-007 4. X. H. Gao, Y. L. Wang, S. P. Lu, J. L. Zhang, S. B. Fan, T. S. Zhao, Microwave hydrothermal preparation of Fe-Zr catalysts and their performance in CO hydrogenation to olefins, J. Fuel Chem., 42 (2014), 219–224. https://doi.org/10.3969/j.issn.0253-2409.2014.02.014 5. B. H. Liu, W. J. Wang, Research progress on catalysts for the synthesis of low carbon olefins by carbon dioxide hydrogenation, Anhui Chem. Industry, 45 (2019), 5. https://doi.org/CNKI: SUN: AHHG.0.2019-05-004
|
|