Few-shot remote sensing scene classification based on multi subband deep feature fusion

Author:

Yang Song12,Wang Huibin1,Gao Hongmin1,Zhang Lili1

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing 211100, China

2. Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huaian 223001, China

Abstract

<abstract> <p>Recently, convolutional neural networks (CNNs) have performed well in object classification and object recognition. However, due to the particularity of geographic data, the labeled samples are seriously insufficient, which limits the practical application of CNN methods in remote sensing (RS) image processing. To address the problem of small sample RS image classification, a discrete wavelet-based multi-level deep feature fusion method is proposed. First, the deep features are extracted from the RS images using pre-trained deep CNNs and discrete wavelet transform (DWT) methods. Next, a modified discriminant correlation analysis (DCA) approach is proposed to distinguish easily confused categories effectively, which is based on the distance coefficient of between-class. The proposed approach can effectively integrate the deep feature information of various frequency bands. Thereby, the proposed method obtains the low-dimensional features with good discrimination, which is demonstrated through experiments on four benchmark datasets. Compared with several state-of-the-art methods, the proposed method achieves outstanding performance under limited training samples, especially one or two training samples per class.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3