Markov modeling and performance analysis of infectious diseases with asymptomatic patients

Author:

Li Quan-Lin,Wang Chengliang,Yang Feifei,Zhang Chi

Abstract

<abstract><p>After over three years of COVID-19, it has become clear that infectious diseases are difficult to eradicate, and humans remain vulnerable under their influence in a long period. The presence of presymptomatic and asymptomatic patients is a significant obstacle to preventing and eliminating infectious diseases. However, the long-term transmission of infectious diseases involving asymptomatic patients still remains unclear. To address this issue, this paper develops a novel Markov process for infectious diseases with asymptomatic patients by means of a continuous-time level-dependent quasi-birth-and-death (QBD) process. The model accurately captures the transmission of infectious diseases by specifying several key parameters (or factors). To analyze the role of asymptomatic and symptomatic patients in the infectious disease transmission process, a simple sufficient condition for the stability of the Markov process of infectious diseases is derived using the mean drift technique. Then, the stationary probability vector of the QBD process is obtained by using RG-factorizations. A method of using the stationary probability vector is provided to obtain important performance measures of the model. Finally, some numerical experiments are presented to demonstrate the model's feasibility through analyzing COVID-19 as an example. The impact of key parameters on the system performance evaluation and the infectious disease transmission process are analyzed. The methodology and results of this paper can provide theoretical and technical support for the scientific control of the long-term transmission of infectious diseases, and we believe that they can serve as a foundation for developing more general models of infectious disease transmission.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3