Mutual-DTI: A mutual interaction feature-based neural network for drug-target protein interaction prediction
-
Published:2023
Issue:6
Volume:20
Page:10610-10625
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Wen Jiahui1, Gan Haitao12, Yang Zhi12, Zhou Ran1, Zhao Jing2, Ye Zhiwei1
Affiliation:
1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China 2. State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
Abstract
<abstract><p>The prediction of drug-target protein interaction (DTI) is a crucial task in the development of new drugs in modern medicine. Accurately identifying DTI through computer simulations can significantly reduce development time and costs. In recent years, many sequence-based DTI prediction methods have been proposed, and introducing attention mechanisms has improved their forecasting performance. However, these methods have some shortcomings. For example, inappropriate dataset partitioning during data preprocessing can lead to overly optimistic prediction results. Additionally, only single non-covalent intermolecular interactions are considered in the DTI simulation, ignoring the complex interactions between their internal atoms and amino acids. In this paper, we propose a network model called Mutual-DTI that predicts DTI based on the interaction properties of sequences and a Transformer model. We use multi-head attention to extract the long-distance interdependent features of the sequence and introduce a module to extract the sequence's mutual interaction features in mining complex reaction processes of atoms and amino acids. We evaluate the experiments on two benchmark datasets, and the results show that Mutual-DTI outperforms the latest baseline significantly. In addition, we conduct ablation experiments on a label-inversion dataset that is split more rigorously. The results show that there is a significant improvement in the evaluation metrics after introducing the extracted sequence interaction feature module. This suggests that Mutual-DTI may contribute to modern medical drug development research. The experimental results show the effectiveness of our approach. The code for Mutual-DTI can be downloaded from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/a610lab/Mutual-DTI">https://github.com/a610lab/Mutual-DTI</ext-link>.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference35 articles.
1. C. Chen, H. Shi, Y. Han, Z. Jiang, X. Cui, B. Yu, DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network, Comput. Biol. Med., 136 (2021), 104676. https://doi.org/10.1101/2020.08.11.247437 2. X. Ru, X. Ye, T. Sakurai, Q. Zou, C. Lin, Current status and future prospects of drug–target interaction prediction, Briefings Funct. Genomics, 20 (2021), 312–322. https://doi.org/10.1093/bfgp/elab031 3. G. Huang, F. Yan, D. Tan, A review of computational methods for predicting drug targets, Curr. Protein Pept. Sci., 19 (2018), 562–572. https://doi.org/10.1016/j.jad.2018.12.111 4. J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, et al., Applications of machine learning in drug discovery and development, Nat. Rev. Drug Discovery, 18 (2019), 463–477. https://doi.org/10.1038/s41573-019-0024-5 5. E. Maia, L. C. Assis, T. Oliveira, A.M. de Silva, A. G. Taranto, Structure-based virtual screening: from classical to artificial intelligence, Front. Chem., 8 (2020), 343. https://doi.org/10.3389/fchem.2020.00343
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|