Mutual-DTI: A mutual interaction feature-based neural network for drug-target protein interaction prediction

Author:

Wen Jiahui1,Gan Haitao12,Yang Zhi12,Zhou Ran1,Zhao Jing2,Ye Zhiwei1

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China

Abstract

<abstract><p>The prediction of drug-target protein interaction (DTI) is a crucial task in the development of new drugs in modern medicine. Accurately identifying DTI through computer simulations can significantly reduce development time and costs. In recent years, many sequence-based DTI prediction methods have been proposed, and introducing attention mechanisms has improved their forecasting performance. However, these methods have some shortcomings. For example, inappropriate dataset partitioning during data preprocessing can lead to overly optimistic prediction results. Additionally, only single non-covalent intermolecular interactions are considered in the DTI simulation, ignoring the complex interactions between their internal atoms and amino acids. In this paper, we propose a network model called Mutual-DTI that predicts DTI based on the interaction properties of sequences and a Transformer model. We use multi-head attention to extract the long-distance interdependent features of the sequence and introduce a module to extract the sequence's mutual interaction features in mining complex reaction processes of atoms and amino acids. We evaluate the experiments on two benchmark datasets, and the results show that Mutual-DTI outperforms the latest baseline significantly. In addition, we conduct ablation experiments on a label-inversion dataset that is split more rigorously. The results show that there is a significant improvement in the evaluation metrics after introducing the extracted sequence interaction feature module. This suggests that Mutual-DTI may contribute to modern medical drug development research. The experimental results show the effectiveness of our approach. The code for Mutual-DTI can be downloaded from <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/a610lab/Mutual-DTI">https://github.com/a610lab/Mutual-DTI</ext-link>.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3