Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke

Author:

Zhu Ming-Xi1,Zhao Tian-Yang2,Li Yan2

Affiliation:

1. Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, 3 College Road, Hainan 571199, China

2. Department of Anesthesia, The 4th Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, China

Abstract

<abstract> <sec><title>Background</title><p>Epigenetic changes, such as DNA methylation and miRNA-target gene mechanisms, have recently emerged as key provokers in Ischemic stroke (IS) onset. However, cellular and molecular events harboring these epigenetic alterations are poorly understood. Therefore, the present study aimed to explore the potential biomarkers and therapeutic targets for IS.</p> </sec> <sec><title>Methods</title><p>miRNAs, mRNAs and DNA methylation datasets of IS were derived from the GEO database and normalized by PCA sample analysis. Differentially expressed genes (DEGs) were identified, and GO and KEGG enrichment analyses were performed. The overlapped genes were utilized to construct a protein-protein interaction network (PPI). Meanwhile, differentially expressed mRNAs and miRNAs interaction pairs were obtained from the miRDB, TargetScan, miRanda, miRMap and miTarBase databases. We constructed differential miRNA-target gene regulatory networks based on mRNA-miRNA interactions.</p> </sec> <sec><title>Results</title><p>A total of 27 up-regulated and 15 down-regulated differential miRNAs were identified. Dataset analysis identified 1053 and 132 up-regulated and 1294 and 9068 down-regulated differentially expressed genes in the GSE16561 and GSE140275 datasets, respectively. Moreover, 9301 hypermethylated and 3356 hypomethylated differentially methylated sites were also identified. Moreover, DEGs were enriched in terms related to translation, peptide biosynthesis, gene expression, autophagy, Th1 and Th2 cell differentiation, primary immunodeficiency, oxidative phosphorylation and T cell receptor signaling pathway. MRPS9, MRPL22, MRPL32 and RPS15 were identified as hub genes. Finally, a differential miRNA-target gene regulatory network was constructed.</p> </sec> <sec><title>Conclusions</title><p>RPS15, along with hsa-miR-363-3p and hsa-miR-320e have been identified in the differential DNA methylation protein interaction network and miRNA-target gene regulatory network, respectively. These findings strongly posit the differentially expressed miRNAs as potential biomarkers to improve ischemic stroke diagnosis and prognosis.</p> </sec> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3