Video-based Person re-identification with parallel correction and fusion of pedestrian area features

Author:

She Liang12,You Meiyue3,Wang Jianyuan4,Zeng Yangyan5

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. School of Computer Science, Hunan University of Technology and Business, Changsha 410205, China

3. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

4. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

5. School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha 410205, China

Abstract

<abstract><p>Deep learning has provided powerful support for person re-identification (person re-id) over the years, and superior performance has been achieved by state-of-the-art. While under practical application scenarios such as public monitoring, the cameras' resolutions are usually 720p, the captured pedestrian areas tend to be closer to $ 128\times 64 $ small pixel size. Research on person re-id at $ 128\times 64 $ small pixel size is limited by less effective pixel information. The frame image qualities are degraded and inter-frame information complementation requires a more careful selection of beneficial frames. Meanwhile, there are various large differences in person images, such as misalignment and image noise, which are harder to distinguish from person information at the small size, and eliminating a specific sub-variance is still not robust enough. The Person Feature Correction and Fusion Network (FCFNet) proposed in this paper introduces three sub-modules, which strive to extract discriminate video-level features from the perspectives of "using complementary valid information between frames" and "correcting large variances of person features". The inter-frame attention mechanism is introduced through frame quality assessment, guiding informative features to dominate the fusion process and generating a preliminary frame quality score to filter low-quality frames. Two other feature correction modules are fitted to optimize the model's ability to perceive information from small-sized images. The experiments on four benchmark datasets confirm the effectiveness of FCFNet.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3