Big data analysis of water quality monitoring results from the Xiang River and an impact analysis of pollution management policies

Author:

Zeng Yangyan1,Zhou Yidong1,Cao Wenzhi1,Hu Dongbin2,Luo Yueping3,Pan Haiting4

Affiliation:

1. School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha 410205, China

2. Business School, Central South University, Changsha 410083, China

3. Environmental Science Research Institute of Hunan Province, Changsha 410007, China

4. Hunan Provincial Ecological Environmental Affairs Center, Changsha 410014, China

Abstract

<abstract> <p>Water pollution prevention and control of the Xiang River has become an issue of great concern to China's central and local governments. To further analyze the effects of central and local governmental policies on water pollution prevention and control for the Xiang River, this study performs a big data analysis of 16 water quality parameters from 42 sections of the mainstream and major tributaries of the Xiang River, Hunan Province, China from 2005 to 2016. This study uses an evidential reasoning-based integrated assessment of water quality and principal component analysis, identifying the spatiotemporal changes in the primary pollutants of the Xiang River and exploring the correlations between potentially relevant factors. The analysis showed that a series of environmental protection policies implemented by Hunan Province since 2008 have had a significant and targeted impact on annual water quality pollutants in the mainstream and tributaries. In addition, regional industrial structures and management policies also have had a significant impact on regional water quality. The results showed that, when examining the changes in water quality and the effects of pollution control policies, a big data analysis of water quality monitoring results can accurately reveal the detailed relationships between management policies and water quality changes in the Xiang River. Compared with policy impact evaluation methods primarily based on econometric models, such a big data analysis has its own advantages and disadvantages, effectively complementing the traditional methods of policy impact evaluations. Policy impact evaluations based on big data analysis can further improve the level of refined management by governments and provide a more specific and targeted reference for improving water pollution management policies for the Xiang River.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3