Author:
Ponce Joan,Thieme Horst R.
Abstract
<abstract><p>It is a fundamental question in mathematical epidemiology whether deadly infectious diseases only lead to a mere decline of their host populations or whether they can cause their complete disappearance. Upper density-dependent incidences do not lead to host extinction in simple, deterministic SI or SIS (susceptible-infectious) epidemic models. Infection-age structure is introduced into SIS models because of the biological accuracy offered by considering arbitrarily distributed infectious periods. In an SIS model with infection-age structure, survival of the susceptible host population is established for incidences that depend on the infection-age density in a general way. This confirms previous host persistence results without infection-age for incidence functions that are not generalizations of frequency-dependent transmission. For certain power incidences, hosts persist if some infected individuals leave the infected class and become susceptible again and the return rate dominates the infection-age dependent infectivity in a sufficient way. The hosts may be driven into extinction by the infectious disease if there is no return into the susceptible class at all.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine