A sustainable smart production model for partial outsourcing and reworking

Author:

Bachar Raj Kumar1,Bhuniya Shaktipada2,AlArjani Ali3,Ghosh Santanu Kumar1,Sarkar Biswajit45

Affiliation:

1. Department of Mathematics, Kazi Nazrul University, Asansol 713340, West Bengal, India

2. Department of Mathematics & Statistics, Banasthali Vidyapith, Rajasthan 304 022, India

3. Department of Industrial Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia

4. Department of Industrial Engineering, Yonsei University, 50 Yonsei-ro, Sinchon-dong, Seodaemun-gu, Seoul 03722, South Korea

5. Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India

Abstract

<abstract><p>Smart production plays a significant role to maintain good business terms among supply chain players in different situations. Adjustment in production uptime is possible because of the smart production system. The management may need to reduce production uptime to deliver products ontime. But, a decrement in production uptime reduces the projected production quantity. Then, the management uses a limited investment for pursuing possible alternatives to maintain production schedules and the quality of products. This present study develops a mathematical model for a smart production system with partial outsourcing and reworking. The market demand for the product is price dependent. The study aims to maximize the total profit of the production system. Even in a smart production system, defective production rate may be less but unavoidable. Those defective products are repairable. The model is solved by classical optimization. Results show that the application of a variable production rate of the smart production for variable market demand has a higher profit than a traditional production (52.65%) and constant demand (12.45%).</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sustainable vehicle allocation decisions under a vertical logistics collaboration setting;Journal of Cleaner Production;2024-05

2. Leverage Smart Production for Opportunities Seizing and Employee Empowerment;2023 International Conference on System Science and Engineering (ICSSE);2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3