Software reliability model for open-source software that considers the number of finite faults and dependent faults

Author:

Song Kwang Yoon1,Kim Youn Su2,Chang In Hong1

Affiliation:

1. Department of Computer Science and Statistics, Chosun University, 309 Pilmun-daero Dong-gu, Gwangju 61452, Republic of Korea

2. Department of Computer Science and Statistics, Graduate School, Chosun University, 309 Pilmun-daero Dong-gu, Gwangju 61452, Republic of Korea

Abstract

<abstract> <p>Software has become a vital factor in the fourth industrial revolution. Owing to the increase in demand for software products in various fields (big data, artificial intelligence, the Internet of Things, etc.), the software industry has expanded more than ever before. Therefore, software reliability has become very important, and efforts are being made to increase it. One of these efforts is the development of software reliability models (SRMs). SRMs have been studied for a long time as a model that predicts software reliability by using the number of software faults. Software failures can occur for several reasons, including independent software faults such as code errors and software hangs, as well as dependent cases where code errors lead to other software faults. Recently, due to the diversity of software operating environments, software faults are more likely to occur in a dependent manner, and, for this reason, they are likely to increase rapidly from the beginning and progress slowly to the maximum number thereafter. In addition, many large companies have focused on open-source software (OSS) development, and OSS is being developed by many users. In this study, we propose a new SRM that considers the number of finite faults and dependent faults, and examine the goodness-of-fit of a new SRM and other existing non-homogeneous Poisson process models based on the OSS datasets. Through numerical examples, the proposed model demonstrated a significantly better goodness-of-fit when compared to other existing models, and it also exhibited better results on the newly proposed integrated criteria.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3