Study on 4D taxiing path planning of aircraft based on spatio-temporal network

Author:

Zhao Ningning,Cui Shihao

Abstract

<abstract><p>In recent years, China vigorously develops energy conservation and emission reduction, in order to actively respond to the national call to make the aircraft operation process reduce unnecessary costs and strengthen the safety of the aircraft taxiing process. This paper studies the spatio-temporal network model and dynamic planning algorithm to plan the aircraft taxiing path. First, the relationship between the force, thrust and engine fuel consumption rate during aircraft taxiing is analyzed to determine the fuel consumption rate during aircraft taxiing. Then, a two-dimensional directed graph of airport network nodes is constructed. The state of the aircraft is recorded when considering the dynamic characteristics of the node sections, the taxiing path is determined for the aircraft using dijkstra's algorithm, and the overall taxiing path is discretized from node to node using dynamic planning to design a mathematical model with the shortest taxiing distance as the goal. At the same time, the optimal taxiing path is planned for the aircraft in the process of avoiding aircraft conflicts. Thus, a state-attribute-space-time field taxiing path network is established. Through example simulations, simulation data are finally obtained to plan conflict-free paths for six aircraft, the total fuel consumption for the six aircraft planning is 564.29 kg, and the total taxiing time is 1765s. This completed the validation of the dynamic planning algorithm of the spatio-temporal network model.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference21 articles.

1. F. Liu, X. Zhang, G. Ma, L. Liu, Research on A* algorithm-based dynamic programming method for airport ground movement, J. air force Eng. Univ. (Nat. Sci. Ed.), 18 (2017), 19–23.

2. J. Yu, L. Chen, Z. Liu, Dynamic taxing path planning based on time-space network, Aeronaut. Comput. Tech., 50 (2020), 25–28.

3. N. Li, Y. Sun, Q. Jiao, Z. Gao, Aircraft taxiing path planning based on multi-target speed profile, Flight Dyn., 38 (2020), 87–94. https://doi.org/10.13645/j.cnki.f.d.20200622.002

4. Z. Zhang, Z. Yu, Taxiing route optimization algorithm based on situation awareness, Sci. Technol. Eng., 22 (2022), 1693–1698.

5. X. Wang, Research on Taxiing Route Planning for Aircraft Based on Surface Hotspots, Master thesis, Civil Aviation Flight University of China in Guanghan, 2015.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3