Hypergraph representation of multimodal brain networks for patients with end-stage renal disease associated with mild cognitive impairment
-
Published:2023
Issue:2
Volume:20
Page:1882-1902
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Xi Zhengtao1, Liu Tongqiang2, Shi Haifeng3, Jiao Zhuqing4
Affiliation:
1. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China 2. Department of Nephrology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China 3. Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, China 4. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
Abstract
<abstract><p>The structure and function of brain networks (BN) may be altered in patients with end-stage renal disease (ESRD). However, there are relatively few attentions on ESRD associated with mild cognitive impairment (ESRDaMCI). Most studies focus on the pairwise relationships between brain regions, without taking into account the complementary information of functional connectivity (FC) and structural connectivity (SC). To address the problem, a hypergraph representation method is proposed to construct a multimodal BN for ESRDaMCI. First, the activity of nodes is determined by connection features extracted from functional magnetic resonance imaging (fMRI) (i.e., FC), and the presence of edges is determined by physical connections of nerve fibers extracted from diffusion kurtosis imaging (DKI) (i.e., SC). Then, the connection features are generated through bilinear pooling and transformed into an optimization model. Next, a hypergraph is constructed according to the generated node representation and connection features, and the node degree and edge degree of the hypergraph are calculated to obtain the hypergraph manifold regularization (HMR) term. The HMR and <bold><italic>L</italic></bold><sub>1</sub> norm regularization terms are introduced into the optimization model to achieve the final hypergraph representation of multimodal BN (HRMBN). Experimental results show that the classification performance of HRMBN is significantly better than that of several state-of-the-art multimodal BN construction methods. Its best classification accuracy is 91.0891%, at least 4.3452% higher than that of other methods, verifying the effectiveness of our method. The HRMBN not only achieves better results in ESRDaMCI classification, but also identifies the discriminative brain regions of ESRDaMCI, which provides a reference for the auxiliary diagnosis of ESRD.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference55 articles.
1. S. M. Li, X. F. Ma, R. W. Huang, M. Li, J. Z. Tian, H. Wen, et al., Abnormal degree centrality in neurologically asymptomatic patients with end-stage renal disease: A resting-state fMRI study, Clin. Neurophysiol., 127 (2016), 602–609. https://doi.org/10.1016/j.clinph.2015.06.022 2. X. F. Ma, G. H. Jiang, S. M. Li, J. H. Wang, W. F. Zhan, S. Q. Zeng, et al., Aberrant functional connectome in neurologically asymptomatic patients with end-stage renal disease, PloS One, 10 (2015), e0121085. https://doi.org/10.1371/journal.pone.0121085 3. E. O'Lone, M. Connors, P. Masson, S. Wu, P. J. Kelly, D. Gillespie, et al., Cognition in people with end-stage kidney disease treated with hemodialysis: A systematic review and Meta-analysis, Am. J. Kidney Dis., 67 (2016), 925–935. https://doi.org/10.1053/j.ajkd.2015.12.028 4. K. Karunaratne, D. Taube, N. Khalil, R. Perry, P. A. Malhotra, Neurological complications of renal dialysis and transplantation, Pract. Neurol., 18 (2018), 115–125. https://doi.org/10.1136/practneurol-2017-001657 5. S. H. Wang, Y. Zhang, Y. J. Li, W. J. Jia, F. Y. Liu, M. M. Yang, et al., Single slice based detection for Alzheimer's disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization, Multimed. Tools Appl., 77 (2018), 10393–10417. https://doi.org/10.1007/s11042-016-4222-4
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|