1. W. Cui, B. Zhang, Lyapunov-regularized reinforcement learning for power system transient stability, IEEE Control. Syst. Lett., 6 (2021), 974–979. https://doi.org/10.1109/LCSYS.2021.3088068
2. B. Li, T. Wen, C. Hu, B. Zhou, Power system transient stability prediction algorithm based on relieff and lstm, in: Artificial Intelligence and Security: 5th International Conference, organizationSpringer, 2019, pp. 74–84. https://doi.org/10.1007/978-3-030-24274-9_7
3. J. L. Cremer, G. Strbac, A machine-learning based probabilistic perspective on dynamic security assessment, CoRR (2019). http://arXiv.org/abs/1912.07477
4. J. D. Morales, X. Ye, J. V. Milanović, Comparative analysis of integral-based indices for on-line assessment of power system transient stability, in: 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), organizationIEEE, 2021, pp. 1–5. https://doi.org/10.1109/ISGTEurope52324.2021.9639940
5. T. Zhao, X. Pan, M. Chen, A. Venzke, S. H. Low, Deepopf+: A deep neural network approach for DC optimal power flow for ensuring feasibility, in: 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2020, Tempe, AZ, USA, November 11-13, 2020, publisherIEEE, 2020, pp. 1–6. https://doi.org/10.1109/SmartGridComm47815.2020.9303017