An improved memetic algorithm to solve the energy-efficient distributed flexible job shop scheduling problem with transportation and start-stop constraints

Author:

Gu Yifan,Xu Hua,Yang Jinfeng,Li Rui

Abstract

<abstract><p>In the current global cooperative production environment, modern industries are confronted with intricate production plans, demanding the adoption of contemporary production scheduling strategies. Within this context, distributed manufacturing has emerged as a prominent trend. Manufacturing enterprises, especially those engaged in activities like automotive mold production and welding, are facing a significant challenge in managing a significant amount of small-scale tasks characterized by short processing times. In this situation, it becomes imperative to consider the transportation time of jobs between machines. This paper simultaneously considers the transportation time of jobs between machines and the start-stop operation of the machines, which is the first time to our knowledge. An improved memetic algorithm (IMA) is proposed to solve the multi-objective distributed flexible job shop scheduling problem (MODFJSP) with the goal of minimizing maximum completion time and energy consumption. Then, a new multi-start simulated annealing algorithm is proposed and integrated into the IMA to improve the exploration ability and diversity of the algorithm. Furthermore, a new multiple-initialization rule is designed to enhance the quality of the initial population. Additionally, four improved variable neighborhood search strategies and two energy-saving strategies are designed to enhance the search ability and reduce energy consumption. To verify the effectiveness of the IMA, we conducted extensive testing and comprehensive evaluation on 20 instances. The results indicate that, when faced with the MODFJSP, the IMA can achieve better solutions in almost all instances, which is of great significance for the improvement of production scheduling in intelligent manufacturing.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3