Data augmentation based semi-supervised method to improve COVID-19 CT classification

Author:

Chen Xiangtao1,Bai Yuting1,Wang Peng2,Luo Jiawei1

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China

2. College of Computer Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China

Abstract

<abstract><p>The Coronavirus (COVID-19) outbreak of December 2019 has become a serious threat to people around the world, creating a health crisis that infected millions of lives, as well as destroying the global economy. Early detection and diagnosis are essential to prevent further transmission. The detection of COVID-19 computed tomography images is one of the important approaches to rapid diagnosis. Many different branches of deep learning methods have played an important role in this area, including transfer learning, contrastive learning, ensemble strategy, etc. However, these works require a large number of samples of expensive manual labels, so in order to save costs, scholars adopted semi-supervised learning that applies only a few labels to classify COVID-19 CT images. Nevertheless, the existing semi-supervised methods focus primarily on class imbalance and pseudo-label filtering rather than on pseudo-label generation. Accordingly, in this paper, we organized a semi-supervised classification framework based on data augmentation to classify the CT images of COVID-19. We revised the classic teacher-student framework and introduced the popular data augmentation method Mixup, which widened the distribution of high confidence to improve the accuracy of selected pseudo-labels and ultimately obtain a model with better performance. For the COVID-CT dataset, our method makes precision, F1 score, accuracy and specificity 21.04%, 12.95%, 17.13% and 38.29% higher than average values for other methods respectively, For the SARS-COV-2 dataset, these increases were 8.40%, 7.59%, 9.35% and 12.80% respectively. For the Harvard Dataverse dataset, growth was 17.64%, 18.89%, 19.81% and 20.20% respectively. The codes are available at <a href="https://github.com/YutingBai99/COVID-19-SSL" target="_blank">https://github.com/YutingBai99/COVID-19-SSL</a>.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3