Functional extreme learning machine for regression and classification

Author:

Liu Xianli1,Zhou Yongquan123,Meng Weiping1,Luo Qifang13

Affiliation:

1. College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China

2. Xiangsihu College of Gunagxi University for Nationalities, Nanning, Guangxi 532100, China

3. Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China

Abstract

<abstract> <p>Although Extreme Learning Machine (ELM) can learn thousands of times faster than traditional slow gradient algorithms for training neural networks, ELM fitting accuracy is limited. This paper develops Functional Extreme Learning Machine (FELM), which is a novel regression and classifier. It takes functional neurons as the basic computing units and uses functional equation-solving theory to guide the modeling process of functional extreme learning machines. The functional neuron function of FELM is not fixed, and its learning process refers to the process of estimating or adjusting the coefficients. It follows the spirit of extreme learning and solves the generalized inverse of the hidden layer neuron output matrix through the principle of minimum error, without iterating to obtain the optimal hidden layer coefficients. To verify the performance of the proposed FELM, it is compared with ELM, OP-ELM, SVM and LSSVM on several synthetic datasets, XOR problem, benchmark regression and classification datasets. The experimental results show that although the proposed FELM has the same learning speed as ELM, its generalization performance and stability are better than ELM.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Extreme Learning Machines (ELMs) for intelligent intrusion detection systems: A survey;Expert Systems with Applications;2024-11

2. Maximizing intrusion detection efficiency for IoT networks using extreme learning machine;Discover Internet of Things;2024-07-09

3. Hybrid Multimodal Machine Learning Driven Android Malware Recognition and Classification Model;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

4. Face Image Recognition Algorithm Based on Label Complementation;網際網路技術學刊;2023-11

5. RUL prediction of rolling element bearings based on ACO-FELM;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3