A point-feature label placement algorithm based on spatial data mining
-
Published:2023
Issue:7
Volume:20
Page:12169-12193
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Cao Wen1, Xu Jiaqi1, Peng Feilin2, Tong Xiaochong3, Wang Xinyi4, Zhao Siqi1, Liu Wenhao1
Affiliation:
1. School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, China 2. Zhongke Yungu Technology, Changsha 201306, China 3. School of Geospatial Information, University of Information Engineering, Zhengzhou 450001, China 4. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
Abstract
<abstract><p>The point-feature label placement (PFLP) refers to the process of positioning labels near point features on a map while adhering to specific rules and guidelines, finally obtaining clear, aesthetically pleasing, and conflict-free maps. While various approaches have been suggested for automated point feature placement on maps, few studies have fully considered the spatial distribution characteristics and label correlations of point datasets, resulting in poor label quality in the process of solving the label placement of dense and complex point datasets. In this paper, we propose a point-feature label placement algorithm based on spatial data mining that analyzes the local spatial distribution characteristics and label correlations of point features. The algorithm quantifies the interference among point features by designing a label frequent pattern framework (LFPF) and constructs an ascending label ordering method based on the pattern to reduce interference. Besides, three classical metaheuristic algorithms (simulated annealing algorithm, genetic algorithm, and ant colony algorithm) are applied to the PFLP in combination with the framework to verify the validity of this framework. Additionally, a bit-based grid spatial index is proposed to reduce cache memory and consumption time in conflict detection. The performance of the experiments is tested with 4000, 10000, and 20000 points of POI data obtained randomly under various label densities. The results of these experiments showed that: (1) the proposed method outperformed both the original algorithm and recent literature, with label quality improvements ranging from 3 to 6.7 and from 0.1 to 2.6, respectively. (2) The label efficiency was improved by 58.2% compared with the traditional grid index.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference40 articles.
1. X. Qin, Y. Luo, N. Tang, G. Li, Making data visualization more efficient and effective: A survey, VLDB. J., 29 (2020), 93–117. https://doi.org/10.1007/s00778-019-00588-3 2. M. Aparicio, C. J. Costa, Data visualization, Commun. Design Quart. Rev., 3 (2015), 7–11. https://doi.org/10.1145/2721882.2721883 3. S. Elwood, Geographic Information Science: Visualization, visual methods, and the geoweb, Prog. Hum. Geogr., 34 (2011), 401–408. https://doi.org/10.1177/0309132510374250 4. A. C. Robinson, U. Demšar, A B. Moore, A. Buckley, B. Jiang, K Field, et al. Geospatial big data and cartography: Research challenges and opportunities for making maps that matter, Int. J. Cartogr., 3 (2017), 32–60. https://doi.org/10.1080/23729333.2016.1278151 5. A. Lhuillier, M. V. Garderen, D. Weiskopf, Density-based label placement, Vis. Comput., 35 (2019), 1041–1052. https://doi.org/10.1007/s00371-019-01686-7
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|