DSCA-Net: A depthwise separable convolutional neural network with attention mechanism for medical image segmentation

Author:

Shan Tong1,Yan Jiayong23,Cui Xiaoyao3,Xie Lijian4

Affiliation:

1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China

3. Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China

4. Children's Hospital of Shanghai, Shanghai 200062, China

Abstract

<abstract> <p>Accurate segmentation is a basic and crucial step for medical image processing and analysis. In the last few years, U-Net, and its variants, have become widely adopted models in medical image segmentation tasks. However, the multiple training parameters of these models determines high computation complexity, which is impractical for further applications. In this paper, by introducing depthwise separable convolution and attention mechanism into U-shaped architecture, we propose a novel lightweight neural network (DSCA-Net) for medical image segmentation. Three attention modules are created to improve its segmentation performance. Firstly, Pooling Attention (PA) module is utilized to reduce the loss of consecutive down-sampling operations. Secondly, for capturing critical context information, based on attention mechanism and convolution operation, we propose Context Attention (CA) module instead of concatenation operations. Finally, Multiscale Edge Attention (MEA) module is used to emphasize multi-level representative scale edge features for final prediction. The number of parameters in our network is 2.2 M, which is 71.6% less than U-Net. Experiment results across four public datasets show the potential and the dice coefficients are improved by 5.49% for ISIC 2018, 4.28% for thyroid, 1.61% for lung and 9.31% for nuclei compared with U-Net.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PyBoFormer: Pyramid Selected Boundary Transformer for Polyp Segmentation;2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS);2023-11-27

2. 1M parameters are enough? A lightweight CNN-based model for medical image segmentation;2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC);2023-10-31

3. Deep learning‐based intraoperative video analysis for supporting surgery;Concurrency and Computation: Practice and Experience;2023-06-25

4. Assessment of encoder-decoder-based segmentation models for thyroid ultrasound images;Medical & Biological Engineering & Computing;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3