High-accuracy positivity-preserving numerical method for Keller-Segel model

Author:

Zhang Lin12,Ge Yongbin2,Yang Xiaojia3

Affiliation:

1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

2. Institute of Applied Mathematics and Mechanics, Ningxia University, Yinchuan 750021, China

3. School of Mathematics and Computer Science, Ningxia Normal University, Guyuan 756000, China

Abstract

<abstract><p>The Keller-Segel model is a time-dependent nonlinear partial differential system, which couples a reaction-diffusion-chemotaxis equation with a reaction-diffusion equation; the former describes cell density, and the latter depicts the concentration of chemoattractants. This model plays a vital role in the simulation of the biological processes. In view of the fact that most of the proposed numerical methods for solving the model are low-accuracy in the temporal direction, we aim to derive a high-precision and stable compact difference scheme by using a finite difference method to solve this model. First, a fourth-order backward difference formula and compact difference operators are respectively employed to discretize the temporal and spatial derivative terms in this model, and a compact difference scheme with the space-time fourth-order accuracy is proposed. To keep the accuracy of its boundary with the same order as the main scheme, a Taylor series expansion formula with the Peano remainder is used to discretize the boundary conditions. Then, based on the new scheme, a multigrid algorithm and a positivity-preserving algorithm which can guarantee the fourth-order accuracy are established. Finally, the accuracy and reliability of the proposed method are verified by diverse numerical experiments. Particularly, the finite-time blow-up, non-negativity, mass conservation and energy dissipation are numerically simulated and analyzed.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3