Dynamic analysis of a new aquatic ecological model based on physical and ecological integrated control
-
Published:2022
Issue:1
Volume:20
Page:930-954
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Huang Qiulin12, Yu Hengguo12, Dai Chuanjun13, Ma Zengling13, Wang Qi13, Zhao Min13
Affiliation:
1. Key Laboratory for Subtropical Oceans & Lakes Environment and Biological Resources Utilization Technology of Zhejiang, Wenzhou University, Wenzhou 325035, China 2. School of Mathematics and Physics, Wenzhou University, Wenzhou 325035, China 3. School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
Abstract
<abstract><p>Within the framework of physical and ecological integrated control of cyanobacteria bloom, because the outbreak of cyanobacteria bloom can form cyanobacteria clustering phenomenon, so a new aquatic ecological model with clustering behavior is proposed to describe the dynamic relationship between cyanobacteria and potential grazers. The biggest advantage of the model is that it depicts physical spraying treatment technology into the existence pattern of cyanobacteria, then integrates the physical and ecological integrated control with the aggregation of cyanobacteria. Mathematical theory works mainly investigate some key threshold conditions to induce Transcritical bifurcation and Hopf bifurcation of the model $ (2.1) $, which can force cyanobacteria and potential grazers to form steady-state coexistence mode and periodic oscillation coexistence mode respectively. Numerical simulation works not only explore the influence of clustering on the dynamic relationship between cyanobacteria and potential grazers, but also dynamically show the evolution process of Transcritical bifurcation and Hopf bifurcation, which can be clearly seen that the density of cyanobacteria decreases gradually with the evolution of bifurcation dynamics. Furthermore, it should be worth explaining that the most important role of physical spraying treatment technology can break up clumps of cyanobacteria in the process of controlling cyanobacteria bloom, but cannot change the dynamic essential characteristics of cyanobacteria and potential grazers represented by the model $ (2.1) $, this result implies that the physical spraying treatment technology cannot fundamentally eliminate cyanobacteria bloom. In a word, it is hoped that the results of this paper can provide some theoretical support for the physical and ecological integrated control of cyanobacteria bloom.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference48 articles.
1. H. Xu, H. Jiang, G. Yu, L. Yang, Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation, Chemosphere, 117 (2014), 815–822. https://doi.org/10.1016/j.chemosphere.2014.10.061 2. B. Q. Qin, G. J. Yang, J. R. Ma, J. M. Deng, W. Li, T. Wu, et al., Dynamics of variability and mechanism of harmful cyanobacteria bloom in Lake Taihu, China, Chin. Sci. Bull., 61 (2016), 759–770. http://dx.doi.org/10.1360/N972015-00400 3. H. Z. Chen, S. P. Zuo, B. Q. Qin, L. T. Ye, H. Wang, Research progress in mechanism of Microcystis aggregation and migration, Environ. Sci. Technol. China, 42 (2019), 142–149. http://dx.doi.org/10.19672/j.cnki.1003-6504.2019.01.021 4. F. X. Kong, R. H. Ma, J. F. Gao, X. Wang, The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu, J. Lake Sci., 21 (2009), 314–328. 5. F. A. Kibuye, A. Zzmyadi, E. C. Wert, A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods, Harmful Algae, 109 (2021), 102099. https://doi.org/10.1016/j.hal.2021.102099
|
|