Cell segmentation in fluorescence microscopy images based on multi-scale histogram thresholding

Author:

Fang Yating,Zhong Baojiang

Abstract

<abstract><p>Cell segmentation from fluorescent microscopy images plays an important role in various applications, such as disease mechanism assessment and drug discovery research. Exiting segmentation methods often adopt image binarization as the first step, through which the foreground cell is separated from the background so that the subsequent processing steps can be greatly facilitated. To pursue this goal, a histogram thresholding can be performed on the input image, which first applies a Gaussian smoothing to suppress the jaggedness of the histogram curve and then exploits Rosin's method to determine a threshold for conducting image binarization. However, an inappropriate amount of smoothing could lead to the inaccurate segmentation of cells. To address this crucial problem, a multi-scale histogram thresholding (MHT) technique is proposed in the present paper, where the scale refers to the standard deviation of the Gaussian that determines the amount of smoothing. To be specific, the image histogram is smoothed at three chosen scales first, and then the smoothed histogram curves are fused to conduct image binarization via thresholding. To further improve the segmentation accuracy and overcome the difficulty of extracting overlapping cells, our proposed MHT technique is incorporated into a multi-scale cell segmentation framework, in which a region-based ellipse fitting technique is adopted to identify overlapping cells. Extensive experimental results obtained on benchmark datasets show that the new method can deliver superior performance compared to the current state-of-the-arts.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3