An innovative parameter optimization of Spark Streaming based on D3QN with Gaussian process regression

Author:

Zhang Hong1,Xu Zhenchao1,Wang Yunxiang1,Shen Yupeng2

Affiliation:

1. School of Cyber Security and Computer, Hebei University, Baoding, China

2. Bureau of Geophysical Prospecting, Baoding, China

Abstract

<abstract><p>Nowadays, Spark Streaming, a computing framework based on Spark, is widely used to process streaming data such as social media data, IoT sensor data or web logs. Due to the extensive utilization of streaming media data analysis, performance optimization for Spark Streaming has gradually developed into a popular research topic. Several methods for enhancing Spark Streaming's performance include task scheduling, resource allocation and data skew optimization, which primarily focus on how to manually tune the parameter configuration. However, it is indeed very challenging and inefficient to adjust more than 200 parameters by means of continuous debugging. In this paper, we propose an improved dueling double deep Q-network (DQN) technique for parameter tuning, which can significantly improve the performance of Spark Streaming. This approach fuses reinforcement learning and Gaussian process regression to cut down on the number of iterations and speed convergence dramatically. The experimental results demonstrate that the performance of the dueling double DQN method with Gaussian process regression can be enhanced by up to 30.24%.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3