Author:
Zheng Xuepeng,Nie Bin,Chen Jiandong,Du Yuwen,Zhang Yuchao,Jin Haike
Abstract
<abstract>
<p>Particle swarm optimization (PSO) has been successfully applied to various complex optimization problems due to its simplicity and efficiency. However, the update strategy of the standard PSO algorithm is to learn from the global best particle, making it difficult to maintain diversity in the population and prone to premature convergence due to being trapped in local optima. Chaos search mechanism is an optimization technique based on chaotic dynamics, which utilizes the randomness and nonlinearity of a chaotic system for global search and can escape from local optima. To overcome the limitations of PSO, an improved particle swarm optimization combined with double-chaos search (DCS-PSO) is proposed in this paper. In DCS-PSO, we first introduce double-chaos search mechanism to narrow the search space, which enables PSO to focus on the neighborhood of the optimal solution and reduces the probability that the swarm gets trapped into a local optimum. Second, to enhance the population diversity, the logistic map is employed to perform a global search in the narrowed search space and the best solution found by both the logistic and population search guides the population to converge. Experimental results show that DCS-PSO can effectively narrow the search space and has better convergence accuracy and speed in most cases.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference44 articles.
1. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-international conference on neural networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
2. J. H. Holland, Genetic algorithms, Sci. Am., 21 (1992), 66–73. https://doi.org/10.1038/scientificamerican0792-66
3. G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 1995–2014. https://doi.org/10.1007/s00521-015-1923-y
4. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055
5. G. G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems, Memetic Comput., 10 (2018), 151–164. https://doi.org/10.1007/s12293-016-0212-3
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献