Extensions of mean-field approximations for environmentally-transmitted pathogen networks

Author:

Davies Kale12,Lenhart Suzanne3,Day Judy34,Lloyd Alun L.5,Lanzas Cristina2

Affiliation:

1. Department of Mathematics, University of Chicago, Chicago, IL, USA

2. Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA

3. Department of Mathematics, University of Tennessee, Knoxville, TN, USA

4. Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA

5. Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC, USA

Abstract

<abstract><p>Many pathogens spread via environmental transmission, without requiring host-to-host direct contact. While models for environmental transmission exist, many are simply constructed intuitively with structures analogous to standard models for direct transmission. As model insights are generally sensitive to the underlying model assumptions, it is important that we are able understand the details and consequences of these assumptions. We construct a simple network model for an environmentally-transmitted pathogen and rigorously derive systems of ordinary differential equations (ODEs) based on different assumptions. We explore two key assumptions, namely homogeneity and independence, and demonstrate that relaxing these assumptions can lead to more accurate ODE approximations. We compare these ODE models to a stochastic implementation of the network model over a variety of parameters and network structures, demonstrating that with fewer restrictive assumptions we are able to achieve higher accuracy in our approximations and highlighting more precisely the errors produced by each assumption. We show that less restrictive assumptions lead to more complicated systems of ODEs and the potential for unstable solutions. Due to the rigour of our derivation, we are able to identify the reason behind these errors and propose potential resolutions.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3