Suppression of absence seizures by using different stimulations in a reduced corticothalamic-basal ganglion-pedunculopontine nucleus model

Author:

Tan Xiaolong,Zhu Rui,Xie Yan,Chai Yuan

Abstract

<abstract> <p>Coupled neural network models are playing an increasingly important part in the modulation of absence seizures today. However, it is currently unclear how basal ganglia, corticothalamic network and pedunculopontine nucleus can coordinate with each other to develop a whole coupling circuit, theoretically. In addition, it is still difficult to select effective parameters of electrical stimulation on the regulation of absence seizures in clinical trials. Therefore, to develop a coupled model and reduce computation cost, a new model constructed by a simplified basal ganglion, two corticothalamic circuits and a pedunculopontine nucleus was proposed. Further, to seek better inhibition therapy, three electrical stimulations, high frequency stimulation (HFS), 1:0 coordinate reset stimulation (CRS) and 3:2 CRS, were applied to the thalamic reticular nucleus (RE) in the first corticothalamic circuit in the coupled model. The simulation results revealed that increasing the frequency and pulse width of an electrical stimulation within a certain range can also suppress seizures. Under the same parameters of electrical stimulation, the inhibitory effect of HFS on seizures was better than that of 1:0 CRS and 3:2 CRS. The research established a reduced corticothalamic-basal ganglion-pedunculopontine nucleus model, which lays a theoretical foundation for future optimal parameters selection of electrical stimulation. We hope that the findings will provide new insights into the role of theoretical models in absence seizures.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3