Nash equilibrium realization of population games based on social learning processes

Author:

Xing Zhiyan,Yang Yanlong,Hu Zuopeng

Abstract

<abstract><p>In the two-population game model, we assume the players have certain imitative learning abilities. To simulate the learning process of the game players, we propose a new swarm intelligence algorithm by combining the particle swarm optimization algorithm, where each player can be considered a particle. We conduct simulations for three typical games: the prisoner's dilemma game (with only one pure-strategy Nash equilibrium), the coin-flip game (with only one fully-mixed Nash equilibrium), and the coordination game (with two pure-strategy Nash equilibria and one fully-mixed Nash equilibrium). The results show that when the game has a pure strategy Nash equilibrium, the algorithm converges to that equilibrium. However, if the game does not have a pure strategy Nash equilibrium, it exhibits periodic convergence to the only mixed-strategy Nash equilibrium. Furthermore, the magnitude of the periodical convergence is inversely proportional to the introspection rate. After conducting experiments, our algorithm outperforms the Meta Equilibrium Q-learning algorithm in realizing mixed-strategy Nash equilibrium.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference38 articles.

1. J. F. Nash, Equilibrium points in n-person games, PNAS, 36 (1950), 48–49. https://doi.org/10.1073/pnas.36.1.48

2. J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286–295. https://doi.org/10.2307/1969529

3. D. Fudenberg, D. K. Levine, The Theory of Learning in Games, MIT Press Books, 1998.

4. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

5. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (1995), 39–43. https://doi.org/10.1109/MHS.1995.494215

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3