Author:
Song Yukun,Song Yue,Wu Yongjun
Abstract
<abstract><p>We present the dynamical equation model of the axially moving system, which is expressed through one partial differential equation (PDE) and two ordinary differential equations (ODEs) obtained using the extended Hamilton's principle. In the case of large acceleration/deceleration axially moving system with system parameters uncertainty and input saturation limitation, the combination of Lyapunov theory, S-curve acceleration and deceleration (Sc A/D) and adaptive control techniques adopts auxiliary systems to overcome the saturation limitations of the actuator, thus achieving the purpose of vibration suppression and improving the quality of vibration control. Sc A/D has better flexibility than that of constant speed to ensure the operator performance and diminish the force of impact by tempering the initial acceleration. The designed adaptive control law can avoid the control spillover effect and compensate the system parameters uncertainty. In practice, time-varying boundary interference and distributed disturbance exist in the system. The interference observer is used to track and eliminate the unknown disturbance of the system. The control strategy guarantees the stability of the closed-loop system and the uniform boundedness of all closed-loop states. The numerical simulation results test the effectiveness of the proposed control strategy.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference29 articles.
1. B. d'Andréa-Novel, J. M. Coron, Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach, Automatica, 36 (2000), 587–593. https://doi.org/10.1016/S0005-1098(99)00182-X
2. M. Krstic, A. Smyshlyaev, Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays, Syst. Control Lett., 57 (2008), 750–758. https://doi.org/10.1016/j.sysconle.2008.02.005
3. Y. Liu, F. Liu, Y. Mei, X. Yao, W. Zhao, Dynamic Modeling and Boundary Control of Flexible Axially Moving System, Springer Nature, 2023. https://doi.org/10.1016/j.sysconle.2008.02.005
4. Z. Zhao, Y. Liu, F. Luo, Output feedback boundary control of an axially moving system with input saturation constraint, ISA Trans., 68 (2017), 22–32. https://doi.org/10.1016/j.isatra.2017.02.009
5. L. Hu, F. D. Meglio, R. Vazquez, M. Kristic, Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs, IEEE Trans. Autom. Control, 61 (2015), 3301–3314. https://doi.org/10.1109/TAC.2015.2512847