The use of cellulolytic <i>Aspergillus</i> sp. inoculum to improve the quality of Pineapple compost

Author:

Irawan Bambang1,Saputra Aandi1,Farisi Salman1,Yulianty Yulianty1,Wahyuningsih Sri1,Noviany Noviany2,Yandri Yandri2,Hadi Sutopo2

Affiliation:

1. Department of Biology, Faculty of Mathematics and Natural Sciences, the University of Lampung, Bandar Lampung, Lampung, Indonesia

2. Department of Chemistry, Faculty of Mathematics and Natural Sciences, the University of Lampung, Bandar Lampung, Lampung, Indonesia

Abstract

<abstract> <p>Pineapple litter has a complex polymer of cellulose, hemicellulose, and lignin, which makes them difficult to decompose. However, pineapple litter has great potential to be a good organic material source for the soil when completely decomposed. The addition of inoculants can facilitate the composting process. This study investigated whether the addition of cellulolytic fungi inoculants to pineapple litters improves the efficiency of the composting processes. The treatments were KP1 = pineapple leaf litter: cow manure (2:1), KP2 = pineapple stem litter: cow manure (2:1), KP3 = pineapple leaf litter: pineapple stem litter: cow manure P1 (leaf litter and 1% inoculum), P2 (stem litter and 1% inoculum), and P3 (leaf + stem litters and 1% inoculum). The result showed that the number of <italic>Aspergillus</italic> sp. spores on corn media was 5.64 x 10<sup>7</sup> spores/mL, with viability of 98.58%. <italic>Aspergillus</italic> sp. inoculum improved the quality of pineapple litter compost, based on the enhanced contents of C, N, P, K, and the C/N ratio, during the seven weeks of composting. Moreover, the best treatment observed in this study was P1. The C/N ratios of compost at P1, P2, and P3 were within the recommended range of organic fertilizer which was 15–25%, with a Carbon/Nitrogen proportion of 11.3%, 11.8%, and 12.4% (P1, P2, and P3), respectively.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Microbiology (medical),Microbiology

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3