Preliminary indication of the role of AHL-dependent quorum sensing systems in calcium carbonate precipitation in Gram-negative bacteria

Author:

Cacchio Paola1,Pellegrini Marika1,Farda Beatrice1,Djebaili Rihab1,Tabacchioni Silvia2,Del Gallo Maddalena1

Affiliation:

1. Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, 67100 L'Aquila, Italy

2. Division Biotechnologies and Agroindustry, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), C.R. Casaccia, 000123 Rome, Italy

Abstract

<abstract> <p>Numerous microbial species participate in precipitation of carbonates in various natural environments, including soils, geological formations, freshwater biofilms and oceans. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and adaptive aspects remain poorly known. Many Gram-negative bacteria use cell-to-cell communication systems relying on N-acylhomoserine lactone (AHLs) signal molecules to express certain phenotypic traits in a density-dependent manner, a phenomenon referred as to quorum-sensing (QS). In this work, bacterial isolates collected from cave and rhizosphere soil were analyzed to study the occurrence of the AHL-mediated QS in bacterial calcium carbonate (CaCO<sub>3</sub>) precipitation. To test the production of AHLs signal molecules, we cross-streaked Gram-negative calcifying strains, selected among the environmental strains studied, with the AHL-negative mutant <italic>Chromobacterium subtsugae</italic> strain CV026. Only <italic>Burkholderia ambifaria</italic> LMG 11351 was able to restore violacein production in CV026 among the tested strains. The constructed AHL-negative mutant of <italic>B. ambifaria</italic> LMG 11351 could not precipitate CaCO<sub>3</sub> on B-4 agar. Scanning Electron Microscopy (SEM) analysis on CaCO<sub>3</sub> crystals obtained <italic>in vitro</italic> shows crystals of different morphologies, calcified biofilms and bacteria in close contact with the precipitated crystals. In the inner layers of the bioliths deposited by <italic>B. ambifaria</italic> LMG 11351, a stream-like organization of the <italic>Burkholderia</italic> imprints was not detected by SEM. Our data provide preliminary evidence that the activation of AHL-regulated genes may be a prerequisite for <italic>in vitro</italic> bacterial carbonatogenesis, in some cases, confirming the specific role of bacteria as CaCO<sub>3</sub> precipitating agents. We enhance the understanding of bacterial CaCO<sub>3</sub> biomineralization and its potential biotechnology implications for QS-based strategies to enhance or decrease CaCO<sub>3</sub> precipitation through specific bacterial processes. The AHL-negative mutant of <italic>B. ambifaria</italic> LMG 11351 (a well-known plant growth-promoting bacterium) could also be used to study plant-bacteria interactions. The adaptive role of bacterial CaCO<sub>3</sub> biomineralization was also discussed.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Microbiology (medical),Microbiology

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3