Osmotic stress as a factor for regulating <i>E. coli</i> hydrogenase activity and enhancing H<sub>2</sub> production during mixed carbon sources fermentation

Author:

Babayan Anush123,Vassilian Anait24,Trchounian Karen123

Affiliation:

1. Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia

2. Scientific-Research Institute of Biology, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia

3. Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, 0025 Yerevan, Armenia

4. Department of Ecology and Nature Protection, Faculty of Biology, Yerevan State University, 0025 Yerevan, Armenia

Abstract

<abstract> <p><italic>Escherichia coli</italic> performs mixed-acid fermentation and produces molecular hydrogen (H<sub>2</sub>) via reversible hydrogenases (Hyd). H<sub>2</sub> producing activity was investigated during hyper- and hypo-osmotic stress conditions when a mixture of carbon sources (glucose and glycerol) was fermented at different pHs. Hyper-osmotic stress decreased H<sub>2</sub> production rate (V<sub>H2</sub>) ~30 % in wild type at pH 7.5 when glucose was supplemented, while addition of formate stimulated V<sub>H2</sub> ~45% compared to hypo-stress conditions. Only in <italic>hyfG</italic> in formate assays was V<sub>H2</sub> inhibited ~25% compared to hypo-stress conditions. In hypo-stress conditions addition of glycerol increased V<sub>H2</sub> ~2 and 3 fold in <italic>hybC</italic> and <italic>hyfG</italic> mutants, respectively, compared to wild type. At pH 6.5 hyper-osmotic stress stimulated V<sub>H2</sub> ~2 fold in all strains except <italic>hyaB</italic> mutant when glucose was supplemented, while in formate assays significant stimulation (~3 fold) was determined in <italic>hybC</italic> mutant. At pH 5.5 hyper-osmotic stress inhibited V<sub>H2</sub> ~30% in wild type when glucose was supplemented, but in formate assays it was stimulated in all strains except <italic>hyfG</italic>. Taken together, it can be concluded that, depending on external pH and absence of Hyd enzymes in stationary-phase-grown osmotically stressed <italic>E. coli</italic> cells, H<sub>2</sub> production can be stimulated significantly which can be applied in developing H<sub>2</sub> production biotechnology.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Microbiology (medical),Microbiology

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3