Genomic characterization of a multidrug-resistant uropathogenic <i>Escherichia coli</i> and evaluation of <i>Echeveria</i> plant extracts as antibacterials

Author:

Castañeda-Meléndrez Ana M.,Magaña-Lizárraga José A.,Martínez-Valenzuela Marcela,Clemente-Soto Aldo F.,García-Cervantes Patricia C.,Delgado-Vargas Francisco,Bernal-Reynaga Rodolfo

Abstract

<abstract> <p>Uropathogenic <italic>Escherichia coli</italic> (UPEC) is the most common bacterial agent associated with urinary tract infections, threatening public health systems with elevated medical costs and high morbidity rates. The successful establishment of the infection is associated with virulence factors encoded in its genome, in addition to antibacterial resistance genes, which could limit the treatment and resolution of the infection. In this sense, plant extracts from the genus <italic>Echeveria</italic> have traditionally been used to treat diverse infectious diseases. However, little is known about the effects of these extracts on bacteria and their potential mechanisms of action. This study aims to sequence a multidrug-resistant UPEC isolate (UTI-U7) and assess the multilocus sequence typing (MLST), virulence factors, antimicrobial resistance profile, genes, serotype, and plasmid content. Antimicrobial susceptibility profiling was performed using the Kirby-Bauer disk diffusion. The antibacterial and anti-adherent effects of the methanol extracts (ME) of <italic>Echeveria</italic> (<italic>E. craigiana</italic>, <italic>E. kimnachii</italic>, and <italic>E. subrigida</italic>) against UTI-U7 were determined. The isolate was characterized as an O25:H4-B2-ST2279-CH40 subclone and had resistant determinants to aminoglycosides, β-lactams, fluoroquinolones/quinolones, amphenicols, and tetracyclines, which matched with the antimicrobial resistance profile. The virulence genes identified encode adherence factors, iron uptake, protectins/serum resistance, and toxins. Identified plasmids belonged to the IncF group (IncFIA, IncFIB, and IncFII), alongside several prophage-like elements. After an extensive genome analysis that confirmed the pathogenic status of UTI-U7 isolate, <italic>Echeveria</italic> extracts were tested to determine their antibacterial effects; as an extract, <italic>E. subrigida</italic> (MIC, 5 mg/mL) displayed the best inhibitory effect. However, the adherence between UTI-U7 and HeLa cells was unaffected by the ME of the <italic>E. subrigida</italic> extract.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3