Author:
Bakar Nurul Alia Syufina Abu,Khuzaini Nur Aliyyah,Baidurah Siti
Abstract
<abstract>
<p>Biomass fuel is one of the renewable energy sources that can be produced by valorization of palm oil mill effluent (POME) and empty fruit bunch (EFB). POME and EFB are available abundantly in Malaysia and only small portion is utilized to produce other value-added products. The objective of this study is to: (1) utilize the wastes from agro-industrial sector especially palm oil wastes and bio-valorize into value-added product of biomass fuel with high CEV, and simultaneously (2) reduce the waste accumulated in the palm oil factory. In this study, co-fermentation of bacteria (<italic>Lysinibacillus</italic> sp.) and fungus (<italic>Aspergillus flavus</italic>) at 37 °C, 180 rpm for 5 days, followed by overnight oven-dry at 85 °C was conducted utilizing a mixture of POME and EFB with the ratio of 7:3 at laboratory scale. Three fermentation medium conditions were performed, namely: (1) Group 1: autoclaved POME and EFB without addition of any microorganisms, (2) Group 2: autoclaved POME and EFB with the addition of <italic>Lysinibacillus</italic> sp. LC 556247 and <italic>Aspergillus flavus</italic>, and (3) Group 3: POME and EFB as it is (non-sterile). Among all condition, Group 2 with co-fermentation evinced the highest calorific energy value (CEV) of 26.71 MJ/kg, highest biochemical oxygen demand (BOD) removal efficiency of 61.11%, chemical oxygen demand (COD) removal efficiency at 48.47%, and total suspended solid (TSS) reduction of 37.12%. Overall, this study successfully utilized abundant POME and EFB waste and turn into value added product of renewable biomass fuel with high CEV percentage and simultaneously able to reduce abundant liquid waste.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Microbiology (medical),Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献