A multimodal parallel method for left ventricular dysfunction identification based on phonocardiogram and electrocardiogram signals synchronous analysis

Author:

Zeng Yajing1,Yang Siyu2,Yu Xiongkai1,Lin Wenting1,Wang Wei1,Tong Jijun2,Xia Shudong1

Affiliation:

1. The Fourth Affiliated Hospital Zhejiang University School of Medicine, Jinhua 321000, China

2. School of Information and Technology, Zhejiang Sci-Tech University, Hangzhou 310000, China

Abstract

<abstract> <p>Heart failure (HF) is widely acknowledged as the terminal stage of cardiac disease and represents a global clinical and public health problem. Left ventricular ejection fraction (LVEF) measured by echocardiography is an important indicator of HF diagnosis and treatment. Early identification of LVEF reduction and early treatment is of great significance to improve LVEF and the prognosis of HF. This research aims to introduce a new method for left ventricular dysfunction (LVD) identification based on phonocardiogram (ECG) and electrocardiogram (PCG) signals synchronous analysis. In the present study, we established a database called Synchronized ECG and PCG Database for Patients with Left Ventricular Dysfunction (SEP-LVDb) consisting of 1046 synchronous ECG and PCG recordings from patients with reduced (n = 107) and normal (n = 699) LVEF. 173 and 873 recordings were available from the reduced and normal LVEF group, respectively. Then, we proposed a parallel multimodal method for LVD identification based on synchronous analysis of PCG and ECG signals. Two-layer bidirectional gate recurrent unit (Bi-GRU) was used to extract features in the time domain, and the data were classified using residual network 18 (ResNet-18). This research confirmed that fused ECG and PCG signals yielded better performance than ECG or PCG signals alone, with an accuracy of 93.27%, precision of 93.34%, recall of 93.27%, and F1-score of 93.27%. Verification of the model's performance with an independent dataset achieved an accuracy of 80.00%, precision of 79.38%, recall of 80.00% and F1-score of 78.67%. The Bi-GRU model outperformed Bi-directional long short-term memory (Bi-LSTM) and recurrent neural network (RNN) models with a best selection frame length of 3.2 s. The Saliency Maps showed that SEP-LVDPN could effectively learn features from the data.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3