An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models

Author:

Zhang Yujun1,Wang Yufei1,Li Shuijia2,Yao Fengjuan3,Tao Liuwei4,Yan Yuxin5,Zhao Juan1,Gao Zhengming36

Affiliation:

1. School of electronics and information engineering, Jingchu University of Technology, Jingmen 448000, China

2. School of Computer Science, China University of Geosciences, Wuhan 430074, China

3. School of computer engineering, Jingchu University of Technology, Jingmen, 448000, China

4. School of foreign languages, Jingchu University of Technology, Jingmen, 448000, China

5. Academy of arts, Jingchu University of Technology, Jingmen 448000, China

6. Institute of intelligent information technology, Hubei Jingmen industrial technology research institute, Jingmen 448000, China

Abstract

<abstract> <p>In order to maximize the acquisition of photovoltaic energy when applying photovoltaic systems, the efficiency of photovoltaic system depends on the accuracy of unknown parameters in photovoltaic models. Therefore, it becomes a challenge to extract the unknown parameters in the photovoltaic model. It is well known that the equations of photovoltaic models are nonlinear, and it is very difficult for traditional methods to accurately extract its unknown parameters such as analytical extraction method and key points method. Therefore, with the aim of extracting the parameters of the photovoltaic model more efficiently and accurately, an enhanced hybrid JAYA and Rao-1 algorithm, called EHRJAYA, is proposed in this paper. The evolution strategies of the two algorithms are initially mixed to improve the population diversity and an improved comprehensive learning strategy is proposed. Individuals with different fitness are given different selection probabilities, which are used to select different update formulas to avoid insufficient using of information from the best individual and overusing of information from the worst individual. Therefore, the information of different types of individuals is utilized to the greatest extent. In the improved update strategy, there are two different adaptive coefficient strategies to change the priority of information. Finally, the combination of the linear population reduction strategy and the dynamic lens opposition-based learning strategy, the convergence speed of the algorithm and ability to escape from local optimum can be improved. The results of various experiments prove that the proposed EHRJAYA has superior performance and rank in the leading position among the famous algorithms.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3