Link importance assessment strategy based on improved $ k $-core decomposition in complex networks

Author:

Zhang Yongheng1,Lu Yuliang2,Yang GuoZheng1

Affiliation:

1. Electronic Engineering Institute, National University of Defense Technology, Heifei 230037, China

2. Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, China

Abstract

<abstract><p>Improving the effectiveness of target link importance assessment strategy has become an important research direction within the field of complex networks today. The reasearch shows that the link importance assessment strategy based on betweenness centrality is the current optimal solution, but its high computational complexity makes it difficult to meet the application requirements of large-scale networks. The $ k $-core decomposition method, as a theoretical tool that can effectively analyze and characterize the topological properties of complex networks and systems, has been introduced to facilitate the generation of link importance assessment strategy and, based on this, a link importance assessment indicator link shell has been developed. The strategy achieves better results in numerical simulations. In this study, we incorporated topological overlap theory to further optimize the attack effect and propose a new link importance assessment indicator link topological shell called $ t $-$ shell $. Simulations using real world networks and scale-free networks show that $ t $-$ shell $ based target link importance assessment strategies perform better than $ shell $ based strategies without increasing the computational complexity; this can provide new ideas for the study of large-scale network destruction strategies.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3